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1. Introduct ion 

Twistor correspondences are widely occurring phenomena whereby the dif- 
ferential geometry of one space is encoded in the complex structure of another. 
This may seem rather paradoxical, insofar as complex structures are, by their 
nature, locally trivial or, if you like, fiat, whereas the occurrence of  the term 
"differential" in the name "differential geometry" precisely stresses the fact that 
the latter subject is primarily concerned with the curvature of spaces. Whither 
has the curvature vanished, then, in this looking-glass world of  twistor spaces? 
As Roger Penrose has taught us, the answer is that it is encoded not in the 
vicinity of a point, but rather in the vicinity of a compact complex submani- 
fold. The purpose of this paper is to present a systematic calculus whereby one 
can decipher geometric information concerning curvature, torsion, and their 
derivatives from a twistorial encryption. 

The basic object to be studied in this article is that of an infinitesimal 
neighborhood in this sense of  Griffiths [6], meaning a complex ringed space 
which represents a jet of an embedding of  one complex manifold in another. 
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In order to clarify this notion, we define an abstract version of it, called 
a fattened comple:c manifold, and give an obstruction-theoretic classification 
of all fattenings of a given complex manifold*. In the context of various 
twistor correspondences, we then relate these obstructions to curvature via 
considerations involving Kodaira-Spencer maps, thereby putting a number of 
applications in the existing literature (e.g., refs. [3,10] ) on a firm footing. 

It is a pleasure to dedicate this article to Roger Penrose on the occasion of 
his 60th birthday. We have learned a great deal from his insights over many 
years. 

2. The obstruction theory of fattenings 

Let Y be a complex manifold, and let X c Y be a closed submanifold. 
The ruth-order infinitesimal neighborhood of X in Y is [6] the ringed space 
X °')  = (X, O¢,,z)), where 

0~,,:~ = ( O r / Z  ' '+ l  ) lx.  

Here, Or is the sheaf of holomorphic functions on Y and 2 c Or is the ideal 
sheaf of functions vanishing on X. These infinitesimal neighborhoods arise as 
the natural setting for formal power-series solutions of extension problems in 
which analytic objects on X are to be extended to a neighborhood of X in 
Y. One may use the above example as a guide in defining a .fattening of a 
complex manifold (X, O) of order m and codimension k to be a ringed space 
X t'') = (X,  Or,,, I ), where Or,,, ~ is locally isomorphic to 

O,,,,k -- 0 [ (  1 . . . . .  ( k ] /  ( ( l  . . . . .  ( k )  ,,,+l 

and is equipped with an augmentation homomorphism a : Or,,,) ~ O which, 
with respect to the above local isomorphisms, just "forgets" (l . . . . .  (k. 

When k = l, a fattening is the same as a thickening in the terminology of 
ref. [4]. The purpose of this section is to provide a solution to the following 
problem: given a fattening X t'n) of X, when does there exist a fattening X O'+pl 
of higher order which extends it and, if so, how many extensions are there? 
The results given here will strengthen and generalize the result for thickenings 
given in ref. [4]. Let X t''~ be a fattening of X, and observe that there is a 
natural collection { X t l l  = 0, 1 . . . . .  m} of associated fattenings obtained by 
setting 

,,~ / '7"1 + I 
0 ( / )  -~ V ( m ) / a . ( m  ) 

As it turns out, this classification has a rather long prehistory; cf., e.g., ref. [12]. For a 
supersymmetric analogue, cf. refs. [4,16]. 
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where 2-(m) C O(m) is the ideal of  nilpotents; one says that X (m) extends X (t). 
These lower order fattenings come equipped with a useful family of  Ou)- 
modules, namely 777p) for p < l + q. In particular, provided m > 0, one may 
define the conormal bundle N* ~ X by O ( N * )  = 2-(1), noting that the right 
hand sheaf is locally free over O(0) = O. The normal bundle N ---, X is defined 
to be its dual. These definitions are dictated by the archetypal examples of  
the infinitesimal neighborhoods of  X c Y. In the special case of  a thickening, 
2-o, ) turns out to be locally free on X (p-~) for p < m so that one can sensibly 
define a vector bundle extension of  N* to X (p-~) by 

Otp- i ) (N*) - -Z(p)  ifk = 1, p < m  

and duals or tensor products of  N* may also be extended to X (p-t). 
In a similar spirit, one may mimic T Y I x  by defining the extended tangent 

bundle 7" ~ X by 

0 ( ? ' )  = Der(O( i ) ,O)  

{ 0 D is c ' l inear  } 
• = D" 0(1) ~ D ( f g )  = f D g  + g D f  " 

This extended tangent bundle fits into an exact sequence 0 ---, T ~ J" ~ N ~ 0, 
where T is the holomorphic tangent bundle on X. From this sequence O(~) 
can be reconstructed [4], so that the family of  all first order fattenings of  X 
with normal bundle N is naturally identified with H l ( X , O ( T  ® N*) ) .  One 
can extend this tangent bundle to X(P-~), for p < m, by 

O(p-t) (T)  - Der(O(p), O(p-I)).  

I f  p > 0, there is a natural restriction homomorphism rt • .Aut(O(m+p)) 
Aut(O(m)) ,  where Aut  denotes ring automorphisms which preserve the aug- 
mentation. Set Aut(,,,) (O(,,,+p)) - ker n. 

Lemma 1. Suppose that p <_ m. Then for any .fattening X (''+p) 
(X, O(,,,+p) ) there is a natural isomorphism 

m +  I Auto,, ) ( O(,,,+v) ) ~- Der( O(p),Z(,,,+p) ). 

Proof. First one constructs an isomorphism 

~m + 1 
O" : A u t ( m ) ( O ( m + p ) )  -=+ Der(O(m+p),.C(m+p), , a ( ~ )  = • - I. 
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To see that this is well defined, suppose that • is an automorphism of  Ot,,,+p) 
-,-,,,+ 1 and acting trivially on Otto)- Then ( ~  - 1 )Oc,,,+p J C -~o,+p) 

( ~  - 1 ) ( f g )  = ~ ( f ) ~ ( g )  - f g 

= f ( ~ -  1 ) (g)  + g ( q b -  l ) ( f )  + [ ( ~ -  1 ) ( f ) ] [ ( ~ -  1 ) (g ) ]  

= f ( @  - 1) (g)  + g ( ~  - 1 ) ( f )  

because p _< m implies that t-t,,,+v)r'rm+l J]2 = 0. Thus, a (@) is indeed a derivation 
• -,rm + 1 i f  • E Aut(,,,) (O(m+p)). Conversely, if  D E "Der(Ol,,,+p),.~(m+p ) ), 

(I + D ) ( f  g) = f g + f D g  + g D f  
= f g  + f D g  + g D f  + [ O f ] [ D g ]  
= [(1 + D ) ( f ) ] [ ( 1  + D ) ( g ) ] ,  

so that 1 + D is an automorphism acting trivially on 0(,, n, and a is bijective. 
To see that a is isomorphism of  sheaves of  groups, notice that if  Dj E 

:Der(Otm+v), "~m+vl~'m+l ,,~ f o r j  = 1,2, then 

D j  (2-p+ I - p .Tin+p+ 1 
On+p) ) C T-(m+p)Dj.T(m+p ) C "~(m+p) ' 

so that p _< m implies DID2 = 0 and 

(I + D l ) ( l  + D2) = 1 + (Dl + D2).  

Hence, tr is indeed an isomorphism as claimed. Finally, notice that there is a 
natural isomorphism 

~ n i  + i ~ m + 1 p • 7 9 e r ( O ( m + p ) , . L ( m + p ) ,  ---> 7~e r (O (p ) , 2 " ( , , +p )  ) 

because elements of  m+l Z p+l by the above lger(Ot,,,+p),Itm+p ~) annihilate t,,,+p) 
correspondence. This gives an isomorphism 

pa " Aut(,,,) (O(m+p)) m + l  ~-- :Der( O ( p ) , I ( m + p  ) ) 

as claimed. D 

The right hand sheaf would be more useful if  it were constructed out of  
Oo, ) alone. The next lemma shows that such a construction is indeed possible. 

1.emma 2. For any fattening X °'+p) = (X, Ot,,,+tj ~ ), 

. .~. 'm+i ~_. ® m + l  . T - - )  
(re+p) O(p_l) tP 

as a sheaf o f  O(p_ ~)-modules, where ® denotes symmetric tensor product. 
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Proof. There is a natural surjective morphism 

127 

, ~ m + l  ,7- ,Tn l  + 1 
,/.L " ~v ,O~p_t lJ . . (p  ) ---~ ~(m+p) 

given by " )  ,,, 
j=o J j =o 

where flj, E I(p), ~,j E Otp_l ), and ~j,/~j~ E Otm+p ) have projections to O(p_~) 
and OCp ), respectively, equal to yj and flj,, respectively, but are otherwise 
arbitrary. 

To show that / t  is injective, notice that the question is local, so that one may 
take Oun+p ) = O,,+p,k which shall be ti-eated as an O-module. Each element 
of ~,,z+~ "r ,. may be expressed as Op _ I.k'°P ,x 

p-1 

F .  f,o...,.,C,o ®. . .  ® c,,._, ® 
q=0 I<io<'..<im+q<k 

where the coefficients J~o..-i~+~ are elements of O. The image of  this element 
under p is 

p - I  

q=0 I<_io<...<i,.+q<k 

which can only be zero if all the coefficients fi0...im.~ vanish, since the terms 
(i0"" (im+~, for q _< p, are independent generators over 0.  [] 

With these tools in hand, we now give the main result of  this section. 

Theorem 3. Suppose that 0 < p < m. The obstruction to the existence o f  a 
fat tening X (''+p) extending a given fat tening X ("1) = (X,  O(m) ) is an element of  
H 2 (X, Der(Otp), ®" + i Z,.) ) ). I f  this obstruction vanishes, the fami ly  o f  all such 

fattenings is acted upon freely and transitively by H I ( X , / ) e r  (O(e), "-" + i 

Proof. The family of  all fattenings of  X of order m + p and codimension k 
is the non-Abelian sheaf cohomology set H l (X, Aut(Om+p,k)) .  By lemmata I 
and 2 there is a short exact sequence of  sheaves of  groups 

:Der(Op,k, ®re+lop_ ..k Zp,k J~" j '  Aut(Om+pk), ~ Aut(Omk),, 

where n is the natural restriction map and j is obtained by following 
(pa)  - l  with the natural inclusion of  Aut(m)(Om+p,k) into ~4ut(Ora+p,k). 
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Since Der(Op,k,®'~+_lkZP,k) is Abelian, the obstruction theory of  ref. [4] 

applies. Thus, if t ~ H ~ (Au t (Om,k ) ) ,  the obstruction to t being in the im- 
age of  rt is an element of n 2 ( x ,  tTPer(Op,k,®'~p+lkZp,k)t-~). Here, the sheaf 

tT~er(Op,k,Q~+_l.kZp,k)t -!  is made from local copies of Der(Op,k, ~''+l~o"_,.~:~p,'l- ,~, 
by using a Cech representation of  t as the set of  transition functions via the 
conjugation action of Aut(Om,k ) on .Aut(m) (Om+p,k). But 

tDer(Op.k,® m+1 Z ~t - I  D e r ( O ( p ) , ~ m + l  .7- Op_l, k p,k l ~ ~Otp_j)-t'(p) l 

if t is a Cech cohomology element representing O(,n). This yields the desired 
result. [] 

Note that two extensions O(m+p ) and -O(m+p) of O(m) are considered to 
be equivalent in the above context iff there is an isomorphism between them 
which induces the identity on Otto ). This is of  course a stronger requirement 
than merely demanding that they be isomorphic as extensions of  O. Specifi- 
cally, the equivalence classes for the latter weaker notion of  equivalence are 
instead parameterized by the orbits of  an action of F(X,.Aut(0)(Otto ) ) )  on 
H I (X, Der(O(p), ®~,+l •(p) ) ). 

Part of  this theorem, namely the H 1 clause, may be checked more directly. 
Indeed, given X tin+p), the family of  all fattenings of  order m + p agreeing 
with X tm) is H l (.AUt(m)(O(m+p))). I f p  < m, one may use lemmata 1 and 2 
to rewrite this as H t (X,  Der (Ocp) ,®~+l tZ(p) ) ) .  

A somewhat different way of  stating the same result involves noticing that 
:Der(O(p), ®~c+l_,Z(p)) may be rewritten as 

r - ~ m +  1 ,7-  Der(O(p), Ocp_ 1) ) ® ®m+ IZ(p) : O(p_l) (~)  ®o(p-l) wo~_l)-/..(p), 

since a derivation from O(p) to an O(p_ 1)-module is determined precisely by ar- 
bitrarily chosen images for (1 . . . . .  (k, z 1 . . . . .  z n ~ O(p), where a (z l) . . . .  , a (z n) 
E O form a local coordinate system. This is particularly appealing in the cases 
when either k o r p  is one, in which case O(p-1) (N*) = Z~o) is a vector bundle 
on X C-°-1). When one inserts these changes, the following is obtained: 

Corollary 4. Suppose that either p = 1 or that k = 1, and let m >_ p. 
The obstruction to f inding X ¢m+p) extending a given X cm) is an element 
o f  H 2 (X, Ot,_  1) ( ~" ® ®m + 1 N* ) ). I f  this obstruction vanishes, then the fami ly  of  
all such fat tenings X c m + p ) is parameterized by H 1 ( X,  O cp_ i ) ( 7" ® ®m + 1 N* ) ). D 

When both k and p are one, this is the result of ref. [4]. 
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3. Relation to Kodaira-Spencer maps 

t29 

Let D c C denote a disk about t = 0 in the complex t-plane, and let 
n : Y ~ D be a submersive holomorphic map, henceforth referred to as a 
family. We will think of such a family as a collection of complex manifolds 
Yt := n -I (t) depending "holomorphically" on the parameter t E D, and so 
often refer to such a family as a deformation of Yt • The Kodaira-Spencer 
obstruction [8] of the family n is the element ks of H l ( y , O ( T n Y ) )  which 
is the obstruction to lifting the vector field d/dt to Y; here TnY := kerDn 
is the vertical tangent bundle of n. To be precise, this obstruction may be 
represented in Cech cohomology by covering y with open sets/A~ on which 
there exist vector fields v~ with Dn(v,~) = d/dt, which is possible precisely 
because n is submersive; then ks is the image in cohomology of the Cech 
cocycle {v,~ - v~} E C l ({/d~}, O(T~Y)) .  

The Kodaira-Spencer map KS of n is the closely related function which 
assigns to any vector v a TtD an element of H ~ (Yt, O(TYt)) ;  namely, it as- 
signs to 2d/dtlt  the restriction of 2ks to Yt. Such a map can equally well be 
defined for a family over an arbitrary complex manifold B, and again is a 
linear functional on the tangent space of the base, with values in the first co- 
homology of the fibers with coefficients in holomorphic vector fields. For the 
analysis of proper families, it typically turns out [8] that the Kodaira-Spencer 
map contains all the information about the family encoded in the obstruc- 
tion ks. However, the families most relevant to twistor correspondences are 
almost never proper. Nonetheless, the same phenomenon occurs: the Kodaira- 
Spencer maps contain all the geometrically relevant information concerning 
the deformation. One of our chief goals in this article is to explain why this 
is so. 

Suppose now that, for some complex manifold X, we are given a closed 
inclusion X x D ~-~ y for which 7r agrees with projection to the second factor. 
Along X x D, we may then choose our local lifts v~ of d/dt  to agree with the 
product lift. This gives rise to a relative version ks = ksl0) ~ H l (Y ,Zx  (T,~Y)) 
of the Kodaira-Spencer obstruction, where Zx is the ideal sheaf of the closed 
subvariety X x D c y .  The previous obstruction ks is then nothing but the im- 
age of ksl0) via the canonical map j ,  : H 1 (Y, Zx (TnY)  ) --o H t ( y , O ( T n Y )  ). 
The relative Kodaira-Spencer map KS~0) is defined in analogy with the pre- 
vious case, but now takes its values in H t (Yt,Zx (TYt)) .  

In the same spirit, suppose that, in addition to a closed inclusion X x D ~ y ,  
we are given an isomorphism between the ruth infinitesimal neighborhood 
of X x D c Y and that of X x D c Y0 x D. Then we can further refine 
our choice of local liftings of d/dt, and this will result in a more refined 
version ks(m) of the relative Kodaira-Spencer obstruction, which will now 
live in HI(y,Z'~+I(T,~Y)) .  We also can then define a refined Kodaira- 
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Spencer map KStm) taking values in H I (Yt, Z~ ~+l (TYt)). As we decrease m, 
these obstructions are interrelated by the obvious maps H l (3;, 2-~' +1( T,~ Y)) --+ 
HI (y,z '~ (T, tY)  ) and HI (Yt,Z'~+I (TYt) ) --, HI (Yt,Z~(TYt)).  

Now notice that every relative family in the above sense gives rise to a one- 
parameter collection of infinitesimal neighborhoods Xt <ml of X c Yt. In light of  
the analysis in section 2, one should ask how the infinitesimal neighborhoods 
are affected by the change. The answer is delightfully simple. Suppose we have 
a family 3; which is trivialized along X to order m. Then for each value of  t 
and each p < m, the image of  KStm) via the restriction map 

H x (Yt,2~ +l (TYt)) ~ H I (X, ~'7 +1 (TYt) / (2~  +p+~ (TYt)))  

yields a holomorphic one-form KSm,m+p on  D taking values in the vector 
space H I (X, Der(OIp), ®~+_~, ZIp))). However, KSm,m+p (d/dt)  is exactly the 

t-derivative of  the the element of  H l (X, Der(Otp), ®'~+l_tZtp) ) ) which moves 

SO m) St (m) to . Thus, for a, b 6_ D, Xb tm) is obtained from Xa tm) by applying 

fab KSm,m+p 6_ H I (X, 79er(O(p), ®~+/  2"(p) ) ) , 

where the above integral of a closed vector-space-valued one-form may be 
performed over any arc joining a to b in D. This then typically results in a 
reduction of  the problem of geometrically interpreting the freedom occurring 
in theorem 3 to a linear calculation. 

4. Deformations of leaf spaces 

We now come to the crucial step in all twistor constructions, which is the 
construction of  leaf spaces. Suppose that W is a complex manifold, and let 
E c T W  be an involutive holomorphic subbundle of  its tangent bundle--i.e. 
an integrable holomorphic distribution of  planes. Let X c W be a complex 
submanifold such that E n T X  = 0. There is a holomorphic foliation tangent 
to E, and we will assume that the leaves are simply connected and that the 
space of leaves W / E  is a complex manifold; i.e., we assume that there exists a 
complex manifold Y and a holomorphic submersion/~ : W ~ Y such that E is 
the vertical tangent bundle T# W of lZ. Assume, moreover, that the immersion 
/Z[x is injective. For our purposes, these added assumptions will impose no 
loss of  generality, as there is always a neighborhood U of X for which the 
foliation has all these properties. 

Let us now consider a one-complex-parameter family of  such involutive 
subbundles Et c W with E = E0 satisfying E n T X  = 0. Then, perhaps by 
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allowing t to range only over a neighborhood D of the origin, and by perhaps 
restricting ourselves to a neighborhood of X, we may assume that the union of 
the leaf spaces W/Et give us family zc : y ~ D; moreover, this family contains 
X x D in a canonical way. What are the Kodaira-Spencer maps of such a 
family? 

Before we even begin to answer this question, we must ask ourselves how 
best to represent the "derivative" of the family of foliations tangent to Et. The 
formal tangent space at E of the space of holomorphic subbundles of T W  is 
just 

I ' ( W , O ( ~ o m ( E ,  T W / E )  ) ) = F(W,  I21 (It*TY) ) . 

Here g2u~ = E* denotes the vertical cotangent bundle of the map /z = /10- 
Explicitly, the /z*TY-valued relative one-form @ which represents dEt/dt at 
t = 0 is characterized by 

, , , , o ,  , = ,o,)  

for any t-dependent vector field ~(t) which lies in in Et. By assumption, 
however, the bundles Et a r e  all involutive, i.e., closed under Lie brackets. This 
then implies that the section @ of £2 t (lz*TY) representing the derivative of 
Et is in the kernel of  the relative exterior derivative 

obtained by differentiating up the fibers of jz. Indeed, let ~(t),  r/(t) E O(Et)  
be t-dependent holomorphic vector fields in on some open subset of W, and 
let ta be any holomorphic one-form on the corresponding region of Y = Y0- 
Then 

(/z*oJ, d@ (~(0), r/(O))) 

t : o  

d 
= d-~ [~/~*o~(r/) - r/#*o~(~) - 

d¢/z*o~(r/)l,~ =o + ~*o~(¢)I,=o 
d [do~(lt,¢(t),lt,rl(t))l]t=o 
dt 

- (~-{-~t (O)),u*o9 (r/(0) ) + (~--~-~t (0 ) )  ~*o9 ( '  (0)) 
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( 7 , 0 , ) 0  
= O .  

We are thus entitled to think of  @ as an element of  F(W,/C) ,  where /C is 
defined by the exact sequence 

o -~ pc -~ a'~ ( u ' r r )  ~ a2(u 'Tr )  ~ . . .  

and so also fits into the exact sequence 

0 ~ l t - I O ( T Y )  ~ O ( / t ' T Y )  ~ IC ---, 0 .  

Since the Kodaira-Spencer  map KS(n ,  t) is concerned only with individual 
values of  t, it suffices to evaluate it at t = 0. To do this, cover Y = Y0 :=  
n - l  (0) with open sets /,/o over which n admits  sections a,, : b/o ---, W. For 
small values of  t, we may assume, by shrinking our covering and if  necessary 
our neiglaborhood of  X, that Et is everywhere transverse to the submanifolds 
a,, (/ga) C W. Also shrinking our neighborhood D c C of  0 as necessary, the 
total space y of  the family is covered by {Va :=  q~o [b/,, x D]}, where 

q)~ :b/,, x D ---, y ,  ( y , t ) ~  ( f l t aa (y ) , l )  • 

We may then define a Cech cocycle representing ks (n )  relative t o  the 
covering {V~} by { v ~ -  v#}, where vo :=  q ~ . ( d / d t ) .  Now, for some point 
y E Y, suppose that we let ct : [0, 1 ] ---, W be a family of  smooth curves which 
are tangent to Et and which join a~(y)  to a point in the image of  a#. Then 

(v,~ -Vp)yl t=o = [¢'o.,~.-'(y) - ~p .~ f ' o , )  ] -~ t=o 

= q ~  d 
#.a,;'(y~-~ [¢,~i ¢,,, 11,:o 

d 
= d-5 [(utaP)-~u'a"(Y)]I'=° 

-- 

= P o . \  Ot Os t=o 

fO [dct(s) ~ j _  = 

= / o  ~°- 
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Hence the the image of d/dtlt=o via the Kodaira-Spencer map KS(n) can be 
represented by the cocycle 

where the integral is understood to be performed along arbitrary paths in the 
fibers o f / l ;  notice that, assuming the leaves of E are simply connected, the 
fact that this is well defined exactly amounts to the fact that ~ is d~,-closed. 

Now consider the long exact sequence 

• .. ----, F(OCI.t*TY)) ~ F(IC) L H I ( l t - I O ( T Y ) )  . . . .  

induced by the short exact sequence 

0 ---, I t - IO(TY)-+O(I . t*TY)  ~ IC --.+ 0 .  (1) 

The connecting homomorphism 

F(IC) L H ~ ( l t - I O ( T Y ) )  

may be constructed in Cech cohomology by taking differences of local splittings 
of the previous map 

I- ' (O(It*TY))  ~ F(1C) 

on the double overlaps of an open cover. But assuming that the fibers o f / t  
are simply connected, such a local splitting s,~ may be constructed on/~-  i (L/o) 
from a local section a~ by the prescription 

£ [so(~)] (w):= ¢ ,  

where the integral is understood to be taken along arbitrary paths in the fibers 
of/l .  Thus the connecting homomorphism is represented in Cech cohomology 
by 

a# 

But, applied to a relative one-form ~0 which represents the derivative of a 
family of foliations, this is, of  course, precisely our formula for the Kodaira- 
Spencer map. Since a theorem of Buchdahl [2] shows that/~" : H  I (Y,O) --, 
H l (W, l~ - lO)  is an isomorphism provided that the fibers of /1 are simply 
connected, we have therefore proved the following: 
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Theorem 5. Let It " W ---, Y be a holomorphic submersion with simply con- 
nected fibers. Then the Kodaira-Spencer map from linearized foliations to 
H l (Y, O ( T Y ) )  is given by the connecting homomorphism 

5 " H°(W,  IC)--*H l (W, I t - I O ( T Y )  ) 

induced by the short exact sequence (1). 

Now the submanifold X c W projects isomorphically to a submanifold 
X c Yt for each value of our deformation parameter, and we therefore also 
have a relative Kodaira-Spencer map ~ of the family y relative to X. This 
gives us a lifting 

HI(Y ,  Z x ( T Y ) )  

j ,  f 
H ° ( W ' E )  5 " H ~ ( Y ' O ( T Y ) )  

of the previous map 5; here j .  denotes the map induced by the inclusion 
homomorphism j : Z x ( T Y )  ---, O ( T Y ) .  But this lifting may again be realized 
on the level of Cech cohomology by the formula f,~ ~0, provided that we now 
take our sections a~ to all restrict to X c Y as the identity map X ~ X c W. 

Now H l (Y, Zx ( T Y )  ) and H l (Y, O ( T Y )  ) are related by the exact sequence 

H ° ( Y , O ( T Y )  ) ~ H ° ( X , O ( T Y )  ) ~ H l (Y, Z x ( T Y )  ) ~ H I ( Y , O ( T Y )  ) . 

Thus (~ induces a map 

f : H ° ( W , O ( I t * T Y ) ) / H ° ( Y , O ( T Y ) )  ~ H ° ( X , O ( T Y ) ) / H ° ( Y , O ( T Y ) )  

from the kernel of  5 to the kernel of j . ,  uniquely specified by the require- 
ment that 5 ' f  = ~d u. But the restriction map p : H ° ( W , O ( I t * T Y ) )  
H ° ( X , O ( T Y ) )  has the property that 5 'p = - S d  u, since 5' is obtained in 
(2ech terms by taking the differences of pairs of local extensions to Y of 
a given section of O ( T Y )  on X c Y, whereas, in light of our assumption 
regarding a~]x , such local extensions to Y of p(g) ,  g E F ( W , O ( # * T Y ) ) ,  
may be explicitly given in the form ga~; thus 
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= - ~ d ~ ( g ) .  

Thus f is just the map induced by - p ,  and so has kernel 

F ( W, Zx (I t*TY ) ) 
[F (W, I t - ~ O ( T Y )  ) n F ( W ,  Zx ( I t*TY)  ) ] 

In summary: 

F (W, Zx (I t*TY) ) 
F (Y ,  Z x ( T Y ) )  

135 

Theorem 6. Let It " W ~ Y be as before. Then the relative Kodaira-Spencer 
map I(S = ~ from linearized foliations to H 1 (Y, Z x ( T Y )  ) fits into an exact 
sequence 

0 ~ H°(Y,  Z x ( T Y ) )  ~ H°(W,  Zx ( I t*TY) )  ~ H°(W,  IC) ~ H 1 (Y, Z x ( T Y ) ) .  

5. Curvature and the Penrose transform 

The Penrose transform is a machine whereby one relates analytic objects 
on one space to the solutions of differential equations on another. The basic 
setting is that of a double fibration 

W 

/ 
Y M 

for which it is assumed that It and u are holomorphic submersions, 
ker It. n ker v. = 0, u is proper, and the fibers of It are one-connected. 
Analytic objects on Y may then be analyzed in terms of M by pulling back 
via It and then pushing down via u. 

For our purposes, it will always be assumed that this double fibration arises 
as a complete analytic family in the sense of Kodaira [7 ], roughly meaning 
that it represents an open set in the space of compact complex submanifolds 
of Y. To be more precise, we assume that, for each fiber X = u-I  (x) of u, 
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the map Plx is injective, and that the normal bundle N of its image satisfies 
the conditions 

H I ( X , O ( N ) )  = 0, (2) 

v°p  *" T x m  ~-, H ° ( X , O ( N )  ). (3) 

(The condition that/~ be a submersion then implies H I (X,Z~,, (N)) = 0 for 
all w 6 W, where X = v - l ( v ( w ) )  and 2-w c Ox is the ideal sheaf of w.) In 
addition, we will assume that the fibers of v are all rigid, in the sense that any 
fiber X = v -l  (x) satisfies 

H I ( X , O ( T X ) )  = 0 ; (4) 

by Kodaira-Spencer theory [8], it then follows that W ~ M is actually 
a locally trivial holomorphic X-bundle. By shrinking our domain, we may 
assume, without loss of generality, that M is a Stein manifold. 

Let us apply the Penrose transform to H I ( Y , O ( T Y ) ) .  The pull-back part 
of the process we have already encountered in the last section; namely, we 
have H I ( Y , O ( T Y ) )  = H 1 ( W , p - I O ( T Y ) ) ,  and the latter fits into an exact 
sequence 

• ..---, H ° ( O ( , u * T r ) )  ~ H°(1C) L H l ( p - ' O ( T Y ) )  ~ H '  ( O ( p * T Y ) )  ---, . . . .  

However, our completeness assumption (2) and the rigidity assumption imply 
that that H I (X, O ( T Y )  ) = 0 for each X = v -I (x), so that, using the fact that 
M is Stein, the Leray spectral sequence of v tells us that H i (  W, O (/z* T Y ) )  = 
0. Thus the Bockstein operator 

F(IC.) L Hl(it-'O(Ty)) 

is surjective, which in light of theorem 5 becomes the statement that all 
formal first order deformations of Y arise from formal first order deforma- 
tions of the foliation/~. Moreover, completeness assumption (3) implies that 
F ( W, 0 (~* T Y )  ) = F ( W, O ( T W )  ), so that we have an exact sequence 

0 ~ F ( Y , O ( T Y ) )  ---, F ( W , O ( T W ) )  ---, F ( W , E )  ---, H' ( Y , O ( T Y ) )  ---, 0 .  

Let us now recall that we also have an exact sequence 

and hence an exact sequence 

0 ~ F ( E )  ~ F(g2~u ( l t * T Y ) )  ~ F ( f 2 ~ ( l t ' T Y ) )  . 
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Thus we may also think of  H l (Y, O ( T Y ) )  as the cohomology of the complex 

• .. ~ F ( W , O ( T W ) )  ~ F (W,  I2~u ( I t ' T r ) )  ~ F(W,  I22u(lt*TY)) 4 . . .  

corresponding to the fact that, with the stated hypotheses, the resolution 

0 ~ I z -~O(TY)~O(12*TY)  ~ £2~1 (It*TY) ~ $2~(1t* * T Y )  . . . .  a, 

is acyclic in the relevant range. To complete the Penrose transform, we push 
this down to M. Namely, there are vector bundles £P on M, with typical fiber 
F (X, 0 (It* T Y  ® A p E* ) ), and H l (Y, 0 ( T Y ) )  becomes the cohomology of  

F ( M , £  °) ~ F ( M , £  I) ~ F (M,£2) ,  

where the operators D u are induced by the relative exterior derivatives d u. 
(In order to give this a good geometric interpretation, we will of  course need 
more information concerning our particular twistor correspondence.) 

6. Half conformally flat four-manifolds 

We shall apply these results to Penrose's twistor theory of an anti-self-dual 
conformal spacetime. The standard theory [l 3,15 ] is as follows. Suppose M 
is a complex Riemannian manifold [9]. Then, the Riemannian curvature 
decomposes as follows [ 14 ]: 

Rabcd = Cabcd Jr gabcd Jr 2Agabc d, 

where Cabcd is the Weyl curvature, Eabcd is equivalent to the trace-flee Ricci 
curvature, and A is proportional to the scalar curvature. The Weyl curvature 
is conformally invariant in the sense that it is unchanged when the metric 
gab is replaced by agab for any nowhere vanishing holomorphic function a. 
Furthermore, if M is four-dimensional then the Weyl curvature decomposes 
further into its selfdual and anti-selfdual parts Cabcd = C5c d Jr Cabcd. In 
two-spinor notation [14], this reads 

Cabcd = ~JA,B,C,D,£ABeCO 31- ~'IABCD~A,B,~C,D,. 

The non-linear graviton construction applies when M is anti-self-dual, i.e. 
when the self-dual part of  the Weyl curvature vanishes. The metric itself is 
unnecessary for this construction. Only the metric up to scale (i.e. only a 
conforrnal structure) is needed. The non-linear graviton construction applies 
locally. Thus, suppose M has an anti-self-dual conformal structure and is also 
geodesically convex as in ref. [9]. Then, the a-planes in the tangent bundle to 
M integrate to give a-surfaces and hence the correspondence 
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F 

/ 
P M 

where P parameterizes the family of  a-surfaces in M.  In the conformally flat 
case M = Gr2(C 4) and P = CP3 as explained, for example, in ref. [15]. The 
manifold M with its conformal structure can be recovered from its twistor 
space P. We shall assume that the reader is familiar with this construction 
and with the two-spinor formalism [ 14] with which it is usually described. 

For each x E P one has the corresponding rational curve Lx - u (/z- l (x ) )  in 
M and hence a series of  fattenings coming from its embedding in M. One can 
use the corollary above (with p = 1 ) to investigate this series. Any fattening 
X ~"~ may be compared with the trivial fattening obtained by embedding X as 
the zero section of  its normal bundle. The deviation of  X tin) from the trivial 
may be measured step by step in the cohomology H t (X, O(if" ® ®raN*)) but 
only the first non-vanishing such class will be well defined. To compute this 
cohomology in our example it is convenient to work on F .  As x varies, the 
normal bundles to Lx fit together to yield the normal bundle to F in P x M,  
namely N = O A ( 1 ) following the notation of  ref. [5 ] adapted to this more 
general setting. Moreover, the tangent bundle if" pulls back onto F to give an 
exact sequence 

0 ~ O ( 2 ) [ - 1 ]  ---,/z*7" ~ N ---, 0, 

where square brackets denote conformal weight. One has 

0 ( 2 )  [ -11 ® ®raN* = O ( A B . . . D ) ( 2  -- m) [ -11,  

tn  

so H I ( F , O ( 2 ) [ - 1 ]  ® ® r a N * )  : 0 for m < 3. Further, 

N ®  ®raN* = OtAs . . . c ) ( l  - m) (90(~s . . . e ) (1  - m)[1],  

m - - I  m + l  

SO HI(F, /~*J~® ® r a N * )  = 0 for m < 2 and the first possibly non-vanishing 
class therefore lies in 

H t (F,/2*~P ® ®3N* ) = H l (F, OtAB) (--2)) (9 H I (F, O(.4BCD) (--2) [ I ] ) 

= F ( M ,  OtAB~[-1]) (gF(M,  OtABCD)). 
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In particular, F (2) may be trivialized. The particular choice of  trivialization, 
however, is acted upon by H ° (F, ~t* T ® C)2N *) = F (M, OtA m [-- 1 ] ). We 

claim that this choice acts on H I (F,/x*T ® C)3N *) by translation in the 
first summand leaving precisely F ( M ,  O(ABCm ) as governing the third order 
fattening and that the field so obtained is precisely the anti-self-dual Weyl 
curvature ~ABCO. Notice that OtAB)[--1] is precisely the bundle of anti-self- 
dual two-forms on M. Our claim is therefore initially made on the grounds of  
naturality--the Weyl curvature is expected as the first reasonable conformal 
invariant whereas there is no invariantly defined anti-self-dual two-form on M. 

In order to prove this, let us compute the Penrose transform of H ~ (P, TP)  
continuing on from the general discussion in section 5 (see also ref. [1 ]). 
Using standard spinor notation [14] we have: 

lt*TP = OA(1) [1 ]  -F O ( 2 ) [ - 1 1 ,  

Ol(I.t*TP) = O A ( 1 ) [ - - 1 ] ® p * T P  = O,4B(2) + O A ( 3 ) [ - - 2 ] ,  

g'22(ll*TP) = 0 ( 2 ) [ - 3 ]  ®lt*TP = OA(3) [ - -2 ]  -F O ( 4 ) [ - - 4 ] ,  

and therefore 

go = v.(I t*TP) = OAA,[2] + O/A,8,)[1], 

E l = u.(Olu(l~*TP)) = OAB(A,B,)[2] -F OA(A,B,C,)[I], 

g2 = u.(O2u (p. Tp )  ) = OA(A,B,C,)[I ] ..1_ O(A,B,C,D,). 

The cohomology of  the complex F ( M , g  °) is the same as the cohomology of  

I-'(M, OAA,[2]) ~ -F'(M,O(ABIIA,B,)[2]) ~ F(M,O(,4,e,C,O,)) 

where the maps are given by 

kA A' H W (A'/ , 'B')  
- - (A '*B) ' 

hABA~B ' A B V tA ,VB,  hc,D,)AB + H:AB, B, hc'D')AB. 

Here, Va is the metric connection and -2Hab its trace-free Ricci curvature 
following the conventions of  ref. [14]. 

We claim that H l (P, TP)  is represented by hab as an infinitesimal change 
in conformal metric. The discussion of  section 4 is precisely what is needed 
to investigate this claim--in the light of  the Penrose transform constructed in 
section 5, theorem 5 may be interpreted as saying that the Kodaira-Spencer 
map is inverse to the Penrose transform. So, let us start with an infinitesimal 
deformation of  the conformal metric and see how this gives rise to a Kodaira- 
Spencer element of  H l (P, TP).  
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Fix a metric gab in the conformal class on M. Let Va denote the cor- 
responding metric connection and also the connection on spinors as in ref. 
[14]. Recall [13] that F is the projective primed spin bundle over M. 
By horizontal lifting, Va becomes a differential operator on all natural ir- 
reducible bundles O ~ a B . . . o ) ( k ) [ w ]  on F.  Combining with the tautological 
section rt a' E F ( F ,  O a' ( 1 ) [ -  1 ] ) gives a differential operator VA = 7tA 'VAA , 

which, acting on functions, defines a rank-two distribution. Using formulae 
for spinor connections derived in ref. [14], it follows that 

VAVAf = r t#r tB 'nc ,  raA,B,oc' f = - - r t#nB 'r tc '~Ja ,B ,c ,n ,on '  f , 

where O ° ' f  = O f~Ot to ,  is the natural differential operator O (k) ---, O °' ( k -  1 ) 
along the fibres of u. Thus, the distribution is integrable if and only if 
~'a,B,c,o, = 0. In other words, M is conformally anti-self-dual. In this case, P 
is the space of leaves of this integrable distribution. 

We wish to deform the metric gab but at the same time keep F fixed so 
as to be able to apply theorem 5. The way to do this (following a similar 
manteuvre used for ambitwistors in ref. [ 10] ) is to consider metrics induced by 
automorphisms of the tangent bundle as follows. Let Cka b : T M  ~ T M  denote 
an automorphism of the tangent bundle. Such an automorphism gives rise to 
a new metric ~ = (~b -j  )*g. Thus, epaC~ba~ca = gab and gab is characterized 
by ~abf(af (  b = g a b X a X  b where ~a  = Xb~Pb a. T h e  automorphism ~b may be 
used to carry spinors for gab into spinors for gab and so F may be regarded as 
fixed. An infinitesimal automorphism has the form dpa b = ~a b + tXa b modulo 
terms of order t 2. From now on we shall neglect terms of order t 2 in all 
computations. Thus, 

gab = (Ja ~ - tXaC)(t~b d -- tXcd)g~d = gab -- l (Xab + Xba).  

Hence, we may as well assume that Xab is symmetric and, since we are only 
interested in conformal metrics (it is easy to check that a conformal change 
of metric has no effect on the twistor construction), we may also assume that 
Xao is trace free. Let hab = -½Xab  so that gab = gab + thab. The requirement 
that hab be trace free symmetric implies that h,4B,4'B' = htAB)~A'B').  T h e  change 
in connection is given by 

Va(.O b = VaOO b -st- ½t[VChab - Vahb c - VbhaC]w~, 

but, in order to view this as a change of differential operator keeping T M  
fixed, we must intertwine it with the automorphism ~ba b to form 

DaWb =- q~acq~bdVc( (~-l)deO.)e) 

= (Oa c - ½tha~)(Jb a - ½thba)fT~((#a e + ½thae)COe) 

= VafO b - ½lhaCVcCOb + ½t[VChab -- VbhaC]O.)c , 
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Da is not strictly a connection but rather satisfies a Leibniz rule 

D a ( f  tob) = fDaOgb + (Daf)tob, 

where Daf  = V a f -  ithaCVcf is a modified exterior derivative. With this 
proviso, Da extends to an operator on all tensors and is metric preserving and 
torsion free in the sense that 

Dagbc = 0 and DlaDbl f = O. 

By general theory, Da should extend to an operator on spinors and indeed 

r'~D L , , D' 
XTchab - Vbhac = CBCV(B, rtC )AA D -t- ~B,C'V(Bhc)AA,D ,, 

so we find that 

! , I , ,  CC'r7 , .  I . t rTD'L , ,](.DC DAA'O)B = ~ A A ' O ) B -  ~tttAA v c c  t ° B -  ~ t lV(Bt tC)AA D 

I CC' DAA,(,OB, ~-. VAA,O.)B, ~thAA, Vcc, OgB, i t o c'  _ _ [V~whc,~AA,o]to . 

We may lift Da to operators on F.  For example, 

"h , c c ' v  , "  i tn  c' DAA,f = VAA,f  -- ~, AA CC J + [V~B, hc'~AA'o]O c f 

acting on (homogeneous) functions. This allows us to define DA = rcA'DAA' 
as a perturbation of  the operator and distribution V,~. To see when DA is 
integrable we compute 

D A D A f  = V A V A f  

- - i I I tB '  hAB, DD'V AVDD, f -- iIIEB' hAB, DD'VDD, VA f 

I --B' --C' +~tJL Jt [VAVDc, hD,)B, AD]OD f 
i B' C' + i t r t  n [VI~c, hD,)B, AD]VAOD' f 

+ ½tn A' n c' [V~B,hc, ~A'AD ]0 B ' v A f  

- - i tn  B' [VAhAB, °9' ]Voo, f -- ~tnl n' [VAD'hcAA,D, ] v c  f 

= V A V A f  + itn'¢nB'{hAOB,A, nC, nAooC' f  
A D D' --It C' [ V A , V ( c ,  ho, IB,AO]O f }  

I A' C' D AB' -~trt  rt {[VtB, hC,~A,aD]V f 

+ [VAA,hAc  ,DD ' ]VDD' f  + i t Ao' c [V hcAa,o, ]Vc, f }  

= XTAVAf  _ I . _A '_B '_C ' r rTA  r7D h AD D' ~t , t  ,, a. t V A , V I C ,  t tD,)B,AD+hA,B,t~C,D, AD}O f 
A' B' C' ~ 1 A B ' AB D' 

= - n  n ~ {~'A,B'C,D' + ~t[V~A,VB,hc'o'~AB + ~A,B, hc'o'~AB]}O f .  



1 4 2  M. Eastwood and C. LeBrun /Fattening complex manifolds 

Recall that ~'A'B'C'o, = 0. Thus, the perturbed distribution is integrable if and 
only if 

AB AB 
V(A,B,  hc,D,)A B + t~(A,B, hc,D,)A B = O. 

Notice for later use that a similar calculation on the unprimed spin bundle 
shows that the anti-self-dual curvature of the perturbed metric g~b written in 
terms of  spinors for g~b is 

1 t IV7  ,4 '  B' A'B' ~.4BCD + ~, I--CAVB hco)A,S, + ~IAB hCO)A,B, ]. 

To relate this infinitesimal change in distribution to its Kodaira-Spencer image 
in H I (P, T P )  as in section 4, we must view it as a section of g2/~ ( Iz*TP).  Whilst 
the above calculations are valid for any homogeneous f ,  if the homogeneity is 
zero, then o C ' f  = nc 'o f ,  where ~:  O ~ O ( - 2 ) [ 1 ]  is the exterior derivative 
along the fibres of  u. Thus, 

D A f  V . 4 f  - l ,_A' t. BB' ½tzrA'zrB'rcC' = ~,,, --AA' V B B , f  + [v~ ,hB 'c 'ADf]Of .  

However, the operator f ~ (Of,  V b f )  C 0 ( - - 2 ) [ 1 ]  + Ob is just the exterior 
derivative d on F so the deformed relative exterior derivative d u = DA is 
related to the original relative exterior derivative d u = VA by 

d u = d u - ½tg/Ad, 

where ~u E g21u(TF) = O.4(1) [ -1 ]  ® (ORB, [2] + O ( 2 ) [ - 1 ] )  is given by 

A' --A~--B'--C'rvD 1~ x 
= (lt hAA,BB,,--I~ J~ n v W r t B ,  C,AD ! 

E OABO,(1)[1] + 0 4 ( 3 ) [ - - 2 ] .  

The natural quotient mapping to ~u ~ ( # * T P )  is defined by contraction with 

gB' in the first factor giving 

' A ~ B '  C ~ C (b = (~z A n s  hA'B'AB,--Zt 7~ ~Z V A,hs,c,AD) 

E O A B ( 2 )  + 0 . 4 ( 3 ) [ - 2 ] .  

In particular, the direct image in F ( M , U . O A B ( 2 ) )  = F ( M ,  OAB(A,B,)[2]) 
gives h~o as required. 

We remark that a more complete discussion of  the Penrose transform from 
this point of view would necessitate a further investigation of the differentials 
of the resolution 

l t*TP ~ g2~ ( l t*TP)  ~ g22u (l~*TP). 



M. Eastwood and C. LeBrun / Fattening complex manifolds 143 

This would force us to consider local twistors and go into a considerable 
digression. We refer to ref. [ 11 ] as an indication of how to carry out such an 
investigation. 

Now fix x E M and the corresponding line X c P. We have shown that 
H l (x ,  :P ® Q)mN) = 0 for m < 2 and so X (2) may be trivialized. Notice, 
however, that 

HO(x,~ '®Q)mN *) = I- ' (X,  (Oc(1)[1]  + O ( 2 ) [ - 1 ] )  ® OIAB)(--2)) 

= _V'(X, OIAB)C(- -1)[1  ] + OIAB)[--1]) 

= OIAB ) [ -1 ] ,  

so there is this degree of freedom in how X 12) may be identified with the 
trivial fattening. 

In any case, suppose we fix a trivialization of X 12). According to section 
3, we may construct the difference between X (3) and the trivial extension 
by integrating the Kodaira-Spencer elements of H t (X, 7" ® Q)3N*)  obtained 
as the images of the infinitesimal deformations preserving X 12), i.e. elements 
of H l ( P , 2 " 3 ( T p ) ) .  Thus, we must investigate the Penrose transform of this 
space. 

The procedure is very similar to the transform of H l (P, T P )  above except 
that we must take into account the vanishing to third order along X. Let X also 
denote the fibre u - l  (x) above x in F.  Vanishing along X C F together with 
constancy along the fibres of It is equivalent to the vanishing along X c P. 
Thus, it is easy to see that the sequence 

Z3x ( I t *TP)  --~ 2.2 {'Q~u ( I t *TP)  ) ~ Zx (.Q2 ( I t *TP)  ) ~ 0 

is a resolution of I t -  l (2.3 ( T p ) )  on F. Taking direct images under u gives 

.T O = I~  ® (OAA,[2] + O(A,B,)[1]) ,  

.T 1 = 12 ® (OAB(A,B,)[2] -Jr OA(A,B,C,)[1]),  

.~-2 = ~x @ (OA(A,B'C')[ 1] "4"- O(A,B,C,D,)), 

such that the cohomology F ( M , 3  r°)  is the Penrose transform of H r ( P ,  T P ) .  
This is slightly more difficult to analyze, but first note that the cokernel of 

2 -3 ® OIA,B,) [1 ] ---' ZZx ® OABIA'8')[2] X 

is 
(Z lZ  ® O(A,B,) [1])  • (ZZx ® OO4B)(A,B,)[2]) 

= C(AS)(A'B'I(C'Z~'I[I] • CIA'e'I[--1] • (2"~ ®O(ABllA,B,I[2]), 
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where CA and CA, denote the two spin spaces at x e M, and that the cokernel 
of 

.I 2 @ OA(A,B,C, ) [ 1 ] ~ I,: ® OA(A,B,C, ) [ 1 ] 

is 

CAA, ~ CB(B,C,D, ) [ 1 ] = CAB(A,B,C,D, ) [ I ] ~ CAB(A,B, ). 

There is an induced mapping 

C(AB) (A'B')(C'D') [ 1 ] ~ C(A,s,) [-- 1 ] ---, CAB(A,B,C,D, ) [ 1 ] ~ CAB(A'B'), 

whose kernel is C~As)[-1] and whose cokernel is C~A'B'C'D'). Consequently, 
the cohomology of F (M, U ° ) is the same as the cohomology of 

U (I3 @ OAA, [2 ] ) "~ U ( I2  @ O(AB)(A,B,) ) ~ C(AB) [--1] "--+ U ( O(A,B,C,D,) ), 

where the differential operators are exactly as before. Thus, the Penrose trans- 
form gives 

H~(p, z3,(Tt')) = C~AB~[--1] * D ,  

where D is the space 

S.t. VIA, VB,hC,D, IA B + (I)(A,B,hc,D,)A B = 0 

hablx = 0 Vahbclx = 0 

I } A'B' = V~k~;  for some kb e F ( M ,  Ob[2])  hAB 
s.t. kblx = 0 Vakblx = 0 V.Vbkcl.~ = 0 

As before, hab represents an infinitesimal change in conformal metric but now 
the gauge fixing at x means that a corresponding change in anti-self-dual Weyl 

A' B' curvature, namely V(aV B hCO)A,B, Ix, makes good sense. 
It remains to show that this infinitesimal change of curvature may be 

interpreted precisely as the second component of the restriction mapping 

H t (P ,Z  3 ( T P ) )  ~ H 1 (X ,  T ® Q3N* ) = C(AS) [-- 1 ] ~ C(ABCD). 

To see this we can relate resolutions on F 

I 3 ( g * T P )  , Z~( I2~( Ia*TP) )  ----, Zx(g22u(l t*Tp))  

1 
Q3CAA' @ ( I . t ' T P ) x  ---, Q2CAA' @ (~e'21 (I.t*TP) )x  ~ CAA, @ ( g 2 2 ( I t ' r P )  )x  
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noting that the second sequence resolves/t-~ (T®Q)3N*). Taking direct images 
of this second sequence gives 

(CcABC)~A'S'C') e CAA' [--2] ) ® (CDD, [2] ~ Cw,w ) [ 1 ] ) 
1 

(C{AB)¢A'S') ~ C [ - 2 ] )  ® (CcDcC'D') [ 2 ] @ Cc<c,D,E,) [ I ] ) 
1 

CAA' ® (CB(B'C'O')[ I ] ~C(B'C'D'E')) 

which has cohomology only in the middle position providing an alternative 
derivation that 

H t (x, T ® C)3N * ) = C(AB) [-- 1 ] ~ C(ABCD). 

This also shows that 

Hl (p ,  Z 3 ( T p ) )  " H t ( X , ~ ® Q ) 3 N . )  

II II 
CCAS) [ -  1 ] , C(AB) [ -  1 ] 

D , C(ABCD) 

A t W I 
is given by hab ~ V(AVB hco)A'B'[x as required. It remains to interpret the 

component o f H  I (P,Y .3(Tp))  or H I (X, T ® C ) 3 N  * ) in CCAB)[--1]. This is an 
artifact of the chosen trivialization as reflected in the isomorphism 

H ° (X, 7 ~ ® Q)2N* ) = CCAB ) [-- 1 ]. 

Integrating up as in section 3 proves the following: 

Theorem 7. There is a preferred trivialization o f  X ~2J such that the difference 
between X ~3) and the trivial fattening in 

H t (X, :F® Q3N*) = C(AB)[ - -1 ]  ~C(ABCD) 

has first component equal to zero. The second component is precisely the anti- 
self-dual Weft curvature at x ~ M. 
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